Source code for opensbt.algorithm.ps_grid

import pymoo

from opensbt.model_ga.individual import IndividualSimulated
pymoo.core.individual.Individual = IndividualSimulated

from opensbt.model_ga.population import PopulationExtended
pymoo.core.population.Population = PopulationExtended

from opensbt.model_ga.result  import SimulationResult
pymoo.core.result.Result = SimulationResult

from opensbt.model_ga.problem import SimulationProblem
pymoo.core.problem.Problem = SimulationProblem
from opensbt.algorithm.ps import PureSampling
from opensbt.experiment.search_configuration import SearchConfiguration
from opensbt.model_ga.problem import SimulationProblem
from opensbt.model_ga.result import SimulationResult
pymoo.core.problem.Problem = SimulationProblem
from pymoo.core.problem import Problem
from opensbt.utils.sampling import CartesianSampling

[docs] class PureSamplingGrid(PureSampling): """ This class provides the Grid Sampling algorithm which generate aquidistant test inputs placed on a grid in the search space. """
[docs] def __init__(self, problem: Problem, config: SearchConfiguration, sampling_type = CartesianSampling): """Initializes the grid search sampling optimizer. :param problem: The testing problem to be solved. :type problem: Problem :param config: The configuration for the search. The number of samples is equaly for each axis. The axis based sampling number is defined via the population size. :type config: SearchConfiguration :param sampling_type: Sets by default sampling type to Cartesian Sampling. :type sampling_type: _type_, optional """ super().__init__( problem = problem, config = config, sampling_type = sampling_type) self.algorithm_name = "GS" self.parameters["algorithm_name"] = self.algorithm_name