opensbt.model_ga package
Submodules
opensbt.model_ga.individual module
opensbt.model_ga.population module
opensbt.model_ga.problem module
- class opensbt.model_ga.problem.SimulationProblem(n_var, n_obj=1, n_ieq_constr=0, n_eq_constr=0, xl=None, xu=None, vtype=None, vars=None, elementwise=False, elementwise_func=<class 'pymoo.core.problem.ElementwiseEvaluationFunction'>, elementwise_runner=<pymoo.core.problem.LoopedElementwiseEvaluation object>, replace_nan_values_by=None, exclude_from_serialization=None, callback=None, strict=True, **kwargs)[source]
Bases:
Problem
This class extends the pymoo’s Problem class to integrate the handling of simulation output-related data.
- __init__(n_var, n_obj=1, n_ieq_constr=0, n_eq_constr=0, xl=None, xu=None, vtype=None, vars=None, elementwise=False, elementwise_func=<class 'pymoo.core.problem.ElementwiseEvaluationFunction'>, elementwise_runner=<pymoo.core.problem.LoopedElementwiseEvaluation object>, replace_nan_values_by=None, exclude_from_serialization=None, callback=None, strict=True, **kwargs)[source]
- Parameters:
n_var (int) – Number of Variables
n_obj (int) – Number of Objectives
n_ieq_constr (int) – Number of Inequality Constraints
n_eq_constr (int) – Number of Equality Constraints
xl (np.array, float, int) – Lower bounds for the variables. if integer all lower bounds are equal.
xu (np.array, float, int) – Upper bounds for the variable. if integer all upper bounds are equal.
vtype (type) – The variable type. So far, just used as a type hint.
opensbt.model_ga.result module
- class opensbt.model_ga.result.SimulationResult[source]
Bases:
Result
This class extends pymoo’s Result class to output simulation results and extract information from the test data.
- property additional_data
- get_first_critical()[source]
Identifies the iteration number when the first critical solutions was found
- obtain_history(critical=False)[source]
Returns the set of test inputs over all genreation based on feasibility and criticality according to number of function evaluations
- obtain_history_archive(critical=False)[source]
Returns all archived test inputs over all generations
- obtain_history_hitherto(critical=False, optimal=True, var='F')[source]
Returns the set of test inputs over all generations based on feasibility and criticality according to number of function evaluations (aggregated)